| Enrollment No: | | Exam Seat No: | |-----------------------|-----------|---------------| | | C II SHAH | LUNIVERSITY | ## Summer Examination-2022 **Subject Name: Metric Space** Subject Code: 4SC05MES1 Branch: B.Sc. (Mathematics) Semester: 5 Date: 26/04/2022 Time: 11:00 To 02:00 Marks: 70 ## **Instructions:** - (1) Use of Programmable calculator & any other electronic instrument is prohibited. - (2) Instructions written on main answer book are strictly to be obeyed. - (3) Draw neat diagrams and figures (if necessary) at right places. - (4) Assume suitable data if needed. | [14] | |-----------------| | (01) | | (-) | | | | | | | | | | (01) | | (=) | | | | | | | | (01) | | (-) | | | | | | | | (01) | | (01) | | (01) | | (01) | | f (01) | | , | | (01) | | (01) | | ` ' | | (02) | | (02) | | | ## Attempt any four questions from Q-2 to Q-8 | | Attempt any four questions from Q-2 to Q-6 | | |------------|--|--------------| | Q-2
a) | Attempt all questions Prove: i) Finite intersection of open sets of metric space is an open set. ii) Arbitrary intersection of closed sets of metric space is a closed set. | [14]
(06) | | b) | Let (X, d) be a metric space and $E \subset X$. If 'a' is a limit point of E then show that there are infinitely many points of E in every neighborhood of 'a'. | (04) | | c) | Define: Closed Set .Show that every finite subset of metric space is closed. | (04) | | Q-3 | Attempt all questions | [14] | | a) | Let $E_n = (c - \frac{1}{n}, c + \frac{1}{n})$ where $c \in N$ is constant and $n \in N$. Compute | (06) | | b) | $\bigcup_{n=1}^{\infty} E_n$ and $\bigcap_{n=1}^{\infty} E_n$ and determine whether they are open or closed?
Let $X = R$ and define $d: R \times R \to R$ by $d(x, y) = x - y $, then prove that (X, d) is metric space. | (05) | | c) | Define (i) Derived Set (ii) Dense Set | (03) | | Q-4 | Attempt all questions | [14] | | a) | Let (X, d) be a metric space and $d_1: X \times X \to \mathbf{R}$ defined by | (06) | | , | $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$ then prove that d_1 is also a metric on X . | , , | | b) | Show that distinct points of metric space have different neighborhoods. | (05) | | c) | If (X, d) is a metric space and $A, B \subset X$ with $A \subset B$, then show that $\overline{A} \subset \overline{B}$. | (03) | | 0.5 | Attornet all arrestions | [1.4] | | Q-5
a) | Attempt all questions For a non-empty subset A of metric space (X, d) show that the function $f: X \to \mathbf{R}$ defined by $f(x) = d(x, A)$, $x \in X$ is uniformly continuous. Also show that $f(x) = 0$ if and only if $x \in \overline{A}$. | [14]
(07) | | b) | Let (X, d) be a complete metric space and $\{F_n\}$ be a decreasing sequence of non-
empty closed subsets of X such that $d(F_n) \to 0$ as $n \to \infty$, then show that $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point. | (07) | | Q-6 | Attempt all questions | [14] | | a)
b) | Prove that the derived set of any subset of metric space is a closed set.
Let (X, d_1) and (Y, d_2) be any two metric space, then prove that $f: X \to Y$ is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y . | (07)
(07) | | Q-7 | Attempt all questions | [14] | | a) | State and prove Banach Fixed Point Theorem. | (07) | | b) | Let (X, d) be a metric space .If $\{x_n\}$ is convergent sequence of points of X then | (04) | | c) | show that $\{x_n\}$ is Cauchy sequence.
Show that the sets $A = (5,6)$ and $B = (6,8)$ are separated sets of metric space R . | (03) | | Q-8 | Attempt all questions | [14] | | a) | Define :Cantor Set.Show that Cantor set is a closed set. | (07) | | b) | Show that every compact subset A of metric space (X, d) is bounded. | (05) | | c) | Give an example of subsets A and B of metric space R such that $(A \cap B)' \neq A' \cap B'$. | (02) |