Enrollment No:		Exam Seat No:
	C II SHAH	LUNIVERSITY

Summer Examination-2022

Subject Name: Metric Space

Subject Code: 4SC05MES1 Branch: B.Sc. (Mathematics)

Semester: 5 Date: 26/04/2022 Time: 11:00 To 02:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

[14]
(01)
(-)
(01)
(=)
(01)
(-)
(01)
(01)
(01)
(01)
f (01)
,
(01)
(01)
` '
(02)
(02)

Attempt any four questions from Q-2 to Q-8

	Attempt any four questions from Q-2 to Q-6	
Q-2 a)	Attempt all questions Prove: i) Finite intersection of open sets of metric space is an open set. ii) Arbitrary intersection of closed sets of metric space is a closed set.	[14] (06)
b)	Let (X, d) be a metric space and $E \subset X$. If 'a' is a limit point of E then show that there are infinitely many points of E in every neighborhood of 'a'.	(04)
c)	Define: Closed Set .Show that every finite subset of metric space is closed.	(04)
Q-3	Attempt all questions	[14]
a)	Let $E_n = (c - \frac{1}{n}, c + \frac{1}{n})$ where $c \in N$ is constant and $n \in N$. Compute	(06)
b)	$\bigcup_{n=1}^{\infty} E_n$ and $\bigcap_{n=1}^{\infty} E_n$ and determine whether they are open or closed? Let $X = R$ and define $d: R \times R \to R$ by $d(x, y) = x - y $, then prove that (X, d) is metric space.	(05)
c)	Define (i) Derived Set (ii) Dense Set	(03)
Q-4	Attempt all questions	[14]
a)	Let (X, d) be a metric space and $d_1: X \times X \to \mathbf{R}$ defined by	(06)
,	$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$ then prove that d_1 is also a metric on X .	, ,
b)	Show that distinct points of metric space have different neighborhoods.	(05)
c)	If (X, d) is a metric space and $A, B \subset X$ with $A \subset B$, then show that $\overline{A} \subset \overline{B}$.	(03)
0.5	Attornet all arrestions	[1.4]
Q-5 a)	Attempt all questions For a non-empty subset A of metric space (X, d) show that the function $f: X \to \mathbf{R}$ defined by $f(x) = d(x, A)$, $x \in X$ is uniformly continuous. Also show that $f(x) = 0$ if and only if $x \in \overline{A}$.	[14] (07)
b)	Let (X, d) be a complete metric space and $\{F_n\}$ be a decreasing sequence of non- empty closed subsets of X such that $d(F_n) \to 0$ as $n \to \infty$, then show that $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point.	(07)
Q-6	Attempt all questions	[14]
a) b)	Prove that the derived set of any subset of metric space is a closed set. Let (X, d_1) and (Y, d_2) be any two metric space, then prove that $f: X \to Y$ is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y .	(07) (07)
Q-7	Attempt all questions	[14]
a)	State and prove Banach Fixed Point Theorem.	(07)
b)	Let (X, d) be a metric space .If $\{x_n\}$ is convergent sequence of points of X then	(04)
c)	show that $\{x_n\}$ is Cauchy sequence. Show that the sets $A = (5,6)$ and $B = (6,8)$ are separated sets of metric space R .	(03)
Q-8	Attempt all questions	[14]
a)	Define :Cantor Set.Show that Cantor set is a closed set.	(07)
b)	Show that every compact subset A of metric space (X, d) is bounded.	(05)
c)	Give an example of subsets A and B of metric space R such that $(A \cap B)' \neq A' \cap B'$.	(02)

